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Introduction

In modern hypersonic projects such as the National Aerospace Plane (NASP), it has
been recognized from the outset that Computational Fluid Dynamics (CFD) must play a
major role. Indeed, the future of high-speed air and space transportation depends critically
on our ability to predict solutions of those aerothermal problems which are too difficult or
expensive to test in ground-based simulation facilities. Great strides have recently been
made in the ability of CFD methods to do this, but it is clear that we still have a long way
to go.

While not the only problem obstructing further advances in CFD, turbulence
modeling is generally recognized to be the major one. A closed solution of the governing
Navier-Stokes equations for turbulent flows of practical consequence is still far beyond our
grasp. At the same time, the simplified models of turbulence which are used to achieve
closure of the Navier-Stokes equations are known to be rigorously incorrect. While these
models serve a definite purpose, they are inadequate for the general prediction of
hypersonic viscous/inviscid interactions, mixing problems, transition, chemical nonequilibria,
and a range of other phenomena which we must be able to predict in order to design a
hypersonic vehicle computationally. For this reason turbulence modeling is a key issue in
NASA’s continued efforts to push forward the boundaries of knowledge of high-speed flight.

Due to the complexity of turbulence, useful new turbulence models are synthesized
only when great expertise is brought to bear and considerable intellectual energy is
expended. Although this process is fundamentally theoretical, crucial guidance may be
gained from carefully-executed basic experiments. Following the birth of a new model, its
testing and validation once again demand comparisons with data of unimpeachable quality.
This report concerns these issues which arise from the experimental aspect of hypersonic
turbulence modeling.

Prior to about 1970, hypersonics was a subject of considerable research in the USA
and abroad. However, for a variety of social, economic, and political reasons, such research
all but ceased in the USA for 15 years. This "gap" in hypersonic technology now hampers
the NASP program and all other modern efforts related to hypersonic flight.



Further, during the "hypersonic gap" years, computer and laser technologies relevant
to fluid-dynamic instrumentation matured considerably. Given these improvements, it is
now possible to carry out far more meaningful and detailed hypersonic experiments than
those of the pre-1970 period. Such efforts have begun, albeit slowly due to the difficulty of
re-invigorating a line of experimental research which has lain dormant for 15 years. Thus,
at the time of this writing, hypersonics suffers the following duality: "classical" hypersonics,
including hypersonic flow theory and old-style data, and "modern” hypersonics, which is
almost entirely computational.

With this background, a High-Speed Turbulence Modeling Workshop was held at
NASA-Ames Research Center during June 7-8, 1988. This workshop had the goal of
identifying ways to improve turbulence modeling for hypersonic flows, with specific
applicability to the NASP Program. Both theoretical and experimental issues were discussed
in detail.

In the course of this discussion, questions arose about the quantity and quality of
existing experimental data which bear upon the issue of hypersonic turbulence modeling.
Specifically, it was pointed out that existing surveys of high-speed flows (eg Ref. 1) list
several hundred experiments which have been carried out at hypersonic speeds. However,
some attendees of the Workshop questioned whether or not any significant number of these
existing experiments could meet the high standards necessary for CFD code validation.

Since this issue could not be resolved straightforwardly at the time, one of the
conclusions of the Workshop was that the need existed to review critically the database of
existing hypersonic experiments for its suitability to turbulence modeling and code
validation. Accordingly, an effort was begun early in 1989 at the Penn State University Gas
Dynamics Laboratory to perform this critical review and to assemble the required database.
The effort was sponsored by the NASP Program through NASA-Ames Research Center, and
is a part of an ongoing overall task to develop compressible urbulence models. This report

represents the result of the first phase of that effort.



Database Subject Areas

In choosing the specific subject areas for this hypersonic database collection
and assessment effort, some caution was exercised in favor of a few critical issues directly
relevant to turbulence modeling. Our purpose in this effort is to define a database for the
specific goal of the advancement of modern turbulence models, not to conduct a broad-
based survey of all previous work in the field of hypersonics.

Accordingly, discussions with NASA personnel have led to the following list

of specific topics for the database:

1) shock wave/boundary-layer interactions
2) supersonic shear layer mixing

3) high-speed attached boundary layers with pressure gradients

The first-year database collection and assessment effort has considered only topic 1) above.
A brief justification of this choice follows.

Shock/boundary layer interactions are recognized as the premier pacing issue of
modern CFD and turbulence modeling for high-speed flows. The reasons for this lie in the
prevalence of shock/boundary layer interaction problems in both external and internal
practical aerodynamics and the fundamental difficulty of such problems. For a practical
example, the interaction of shock waves with boundary layers underlies the efficiency (if not
the viability) of all high-speed inlets for airbreathing propulsion. For a basic example, note
that these flows embody mixed hyperbolic and elliptic flow domains with boundaries not
known a priori, and that the problem of turbulent boundary-layer separation (not even
solved in incompressible flow) is included in shock/boundary layer interactions. For these
reasons, the most advanced CFD codes have traditionally been tested against such
interactions, though very little has been done so far to test CFD methods or validate codes
against hypersonic shock/boundary layer interactions.

Specifically, the coverage of the present database collection and assessment

effort with respect to shock/boundary layer interactions includes both supersonic (M ~ 3



and above) and hypersonic data, both two-dimensional (2-D) and three-dimensional (3-D)
data, and both unseparated and separated turbulent boundary layer cases (though the
emphasis is on the latter). Consideration also includes not only perfect-gas behavior, but
real gases and (where appropriate) chemically-reacting flows as well. It is recognized,

however, that very little data of the latter two types exist within the chosen subject area.

Database Collection

Our philosophy of collecting the necessary data for this study hinges around the

following four strategies:

1) Take full advantage of pre-existing database reviews, surveys, and compilations.

2) Conduct machine searches to identify likely candidate studies cited in the literature.

3) Make use of NASA, NTIS, DTIC, AIAA, and other technical library resources to obtain
data reports as necessary.

4) Contact investigators, both former and current, as necessary to obtain sufficient

documentation of prime candidate studies.

During the initial phase of this effort we have studied a variety of prior reviews and
surveys on shock/boundary-layer interactions and related subjects (eg Refs. 1-19). The
library holdings of the Penn State Gas Dynamics Laboratory, which has a long-term research
effort on this topic, were also thoroughly reviewed. However, the major data collection
effort took the form of computerized literature searches.

We have searched the AIAA Aerospace Database, which comprises file 108 of the
Dialog computerized database system. The Aerospace Database covers publications and
reports since 1962 on aerospace-related subjects, and includes both International Aerospace
Abstracts, compiled by the AIAA, and Scientific and Technical Aerospace Reports,
compiled by NASA. Considering the strong aerospace flavor of the present subject matter,

it was felt that this database was an obvious choice and that searches of other science and



engineering databases would be unlikely to turn up significant additional material of
relevance.

Before beginning this search process, the NASA Thesaurus (Ref. 20) was consulted
for appropriate keywords. A group of obvious references to be included in the database
were called up from the Aerospace Database to determine which keywords were used. As
it happens, there is no single keyword entry in use for "shock wave/boundary-layer
interaction." Instead, the keywords SHOCK WAVE INTERACTION and
INTERACTIONAL AERODYNAMICS are most prevalent. At the time the search was
conducted, the Aerospace Database contained 3,379 references ("Set 1") indexed by one or
the other of these two keyword phrases. Examination of a random sampling of these
revealed a low percentage of useful entries for present purposes.

Our next step was to search for citations with one or more of the keywords
BOUNDARY LAYER, TURBULENT BOUNDARY LAYER, SUPERSONIC
BOUNDARY LAYER, or HYPERSONIC BOUNDARY LAYER. This subset ("Set 2")
of the Aerospace Database contained 27,122 citations. The intersection of Sets 1 and 2 (998
citations) is thus the set ("Set 3") described as "shock wave/boundary-layer interactions," at
least insofar as keyword descriptors are concerned. However, examination of a random
sampling from Set 3 still revealed inappropriate citations for present purposes. It seems that
the combination of keywords used so far is necessary but not sufficient to fully characterize
the literature citations which we sought.

We next decided to narrow the range of consideration still further by requiring that,
in addition to the above keywords, descriptors related to shock/boundary-layer interactions
must also appear in the title or abstract of the citation. A long list of such possible
descriptors was compiled and linked by Boolean "or" terms, such that the presence of any
one of them would produce a "hit." Upon searching titles and abstracts of the Aerospace
Database for this list, a set ("Set 4") of 815 citations was found. The intersection of Sets 3
and 4 resulted in 436 citations ("Set 5").

Examination of a random sampling of citations from Set 5 now revealed a high
incidence of what appeared to be pertinent references. One final step was taken to narrow

this list still further by excluding those citations in which the keywords LAMINAR,
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TRANSONIC, and COMPUTATIONAL FLUID DYNAMICS appeared. This was done
because these three descriptors typically characterize studies which are not pertinent for
present purposes. The result of this operation on Set 5 was Set 6, containing 279 citations.

Every citation in Set 6 was scanned by abstract in order to determine its relevance.
This process depended heavily on our background and experience in shock/boundary-layer
interaction research in order to identify likely candidate experiments. In all cases for which
a decision could not be reached from the abstract alone, a hard copy of the full document
was obtained and scanned. The result of this process was the final set ("Set 7"), which
consisted of 105 distinct experimental studies of shock wave interactions with turbulent
boundary layers at Mach numbers of 3 or higher. Set 7 was subjected to the database

assessment procedure described below.

Database Assessment

This was the critical step of the study, in which the decision was made as to which
of the possible candidate experiments identified above actually merit inclusion in a database
to be put forth as a standard for CFD code validation and turbulence model development.
Our philosophy at this stage was that we were looking only for those few experimental
studies of unimpeachable quality and direct pertinence to the subject at hand. It would be
a mistake to give benefit of doubt in such an assessment if that doubt might cause future
turbulence modeling efforts to be misled. Also, we drew guidance from a distinguished
predecessor at this task (Ref. 21), who noted that those data turn out to be most useful in
which only one factor is varied at a time, and that there appears to be a certain level above
which measurements can be described as being of "professional quality.”

We have subjected the 105 candidate studies of Set 7 above to a test based on
rigorous criteria for this purpose. The criteria are grouped in two categories: "necessary”
and "desirable.” Candidate experiments were required to pass all the "necessary" criteria in
order to be considered further. However, even then, failure to meet any of the "desirable"
criteria might result in rejection of a candidate experiment for the database, on the basis

that it fails to contribute anything truly useful to the goal of the database.



It is recognized, considering that many of the candidate studies are 15 years old or
older, that the rigorous application of modern code validation criteria would eliminate most
or all of them. Accordingly, a second category was created to include "qualified"
experiments, ie, the best of those which do not meet all the necessary criteria but still retain
some value for code validation and turbulence modeling.

Our list of the 8 necessary criteria we applied is given below, in the hierarchical order

in which they were applied.

1) BASELINE APPLICABILITY
All candidate studies must be experiments involving turbulent flows in either of the
supersonic or hypersonic Mach number ranges (ie M ~ 3 or higher). Further, these studies

must address the subject area of shock wave/boundary-layer interactions.

2) SIMPLICITY

All candidate studies passing this criterion must involve experimental geometries
sufficiently simple that they may be modeled by CFD methods without enormous difficulty.
Flows through complex inlet scale-models or over the surfaces of complete 3-D flight
configurations are rejected at this point, for example. Stated in other words, this criterion

is a filter which passes only "building-block” experiments.

3) SPECIFIC APPLICABILITY

All candidate studies passing this criterion must be capable of providing some useful
test of turbulence modeling. For example, any study which provides only a surface pressure
distribution over an arbitrary surface in hypersonic flow is rejected as insufficient to further
the goals of turbulence modeling. To be a useful test case, such a study would at least
require additional data such as flowfield profiles or heat transfer/skin friction distributions.

(Some experienced judgement was called for in the application of this criterion.)



4) WELL-DEFINED EXPERIMENTAL BOUNDARY CONDITIONS

This criterion was applied in a sense similar to that of CFD studies, where a rational
solution cannot be had if the boundary conditions of the problem are inadequately defined.
For high-speed experiments, this criterion requires at least that all incoming conditions
(especially the state of the incoming boundary-layer) be carefully documented. For
turbulent incoming boundary-layers, either known upstream transition conditions (to allow
a boundary-layer calculation to be made) or else the documentation of both the mean and
fluctuating character of the incoming profile must be provided. Similarly, all studies
claiming "2-D" flow must show data which establish the extent of spanwise flow variations.

We recognized at the outset that this criterion alone might eliminate a large
proportion of all past hypersonic studies from further consideration. However, without it,

the resulting database would fail to be useful for its intended purpose.

5) WELL-DEFINED EXPERIMENTAL ERROR BOUNDS

To pass this criterion, the experimenter him/her/self must have provided an analysis
of the accuracy and repeatability of the data, or error bands on the data themselves.
Further, such accuracy indications or error bounds must be substantiated in some rational
way beyond their mere statement. (Without this criterion, a proper code validation exercise

cannot be conducted with the subject data.)

6) CONSISTENCY CRITERION
If, during the consideration of a candidate study, mutually inconsistent results are
discovered, said study was eliminated from further consideration for the database. This

criterion amounts to a special corollary of the previous criterion.

7) ADEQUATE DOCUMENTATION OF DATA

Candidate studies were examined to determine whether or not their data are
documented sufficiently to allow quantitative results to be included in the database in
tabulated and machine-readable form. Those failing this criterion were eliminated. This

criterion applied in particular to studies whose documentation was available only in plotted
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form. If such plots were quantitatively unreadable within reasonable error bounds as
mentioned above (taking note of the well-known scale distortions which often occur during
publication), then the data cannot be considered useful for the stated purpose of the
database. (Coles, Ref. 21, read data from plots in only two cases; we have not done so at

all in the present study.)

8) ADEQUATE SPATIAL RESOLUTION OF DATA

To pass this criterion, experiments must present data of sufficiently high resolution,
compared with the scale of the flow in question, that the key features of the flow are clearly
resolved. Failure to do so results in data which are inadequate to provide a proper example

or test for turbulence modeling.

In addition to the above-listed "necessary” criteria, the following "desirable" criteria

also had an influence on which candidate experiments were finally included in the database:

1) TURBULENCE DATA
In addition to purely mean-flow measurements, data on fluctuating quantities such

as Reynolds stresses and velocity or mass-flux fluctuations were considered highly desirable.

2) REALISTIC TEST CONDITIONS
Of those flows passing the necessary criteria, special preference was given to cases
with Mach numbers in the hypersonic range, non-adiabatic wall conditions, real-gas effects,

or related characteristics typical of actual hypersonic flight.

3) NON-INTRUSIVE INSTRUMENTATION

All other conditions being equal, preference was given to experiments wherein non-
intrusive instrumentatation (eg optical measurements) were employed to acquire the data.
This preference is based on the automatic satisfaction of related error and boundary-

condition concerns which occurs when non-intrusive measurements are made.



4) REDUNDANT MEASUREMENTS
Further preference was given to experiments in which redundant data were taken in
order to establish the values of flow quantities by more than one method. This is

considered to be a strong demonstration of the quality and error bounds of the data.

5) FLOW STRUCTURE AND PHYSICS

Finally, preference was also given to those experiments which, in addition to
quantitative data, also reveal flow structures and physical mechanisms. The philosophy of
this criterion was to allow higher-level CFD comparisons with the salient characteristics of

the flows in question, rather than merely with unstructured flow profiles.

The 105 individual studies subjected to the above criteria are listed by bibliographic
citation in Appendix A. Each of these studies was given a detailed assessment through
examination of its source material. During the evaluation procedure a tabular evaluation
matrix was kept of decisions in each assessment category for every studied considered. A
form of this table is given as Appendix B. Other than an indication of whether or not each
candidate met the criteria indicated, additional notes pertinent to the assessment are

provided in some cases.
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Results and Conclusions

As shown in the evaluation tables of Appendix B, only a few of the "finalists" in
Database Collection Set 7 passed a sufficient number of the assessment criteria to be
accepted into the database. Of these, we observed the trend that far more acceptable
studies fell in the supersonic Mach number range (Mach 3 to 5) than in the hypersonic
range (above Mach 5). We have therefore split the Category I (accepted) studies into
groups A (hypersonic) and B (supersonic).

Since the above result became clear early in the assessment phase, somewhat tougher
standards were applied to supersonic than to hypersonic studies. Along the same lines, the
paucity of true hypersonic data resulted in all such studies being accepted which at least met
the 8 "necessary" criteria. In other words, we were in no position to be "choosy” where
category IA was concerned.

The studies accepted in categories IA and IB are listed in the Tables below and
tabulated data for each of them are included in Appendix C. Category II (limited
acceptance) status was also extended to the axisymmetric cylinder-flare experiment of
Coleman (Database References 16 and 17) and the 2-D compression corner data of Holden
(Database References 41 and 42). These data have some value for code validation and
turbulence modeling even though incoming boundary-layer conditions were not reported.
However, we have made no attempt to tabulate data for these Category II studies.

A single general conclusion may be drawn from this study: high-quality data on
hypersonic shock/boundary-layer interactions, suitable for use in turbulence modeling
efforts, are extremely scarce. The existing data do not begin to satisfy the current need.
Thus the authors strongly suggest that new, detailed, carefully-planned experiments be
funded and carried out. Suggestions for these experiments are listed in the next section.
In particular, no useful real-gas data were found in the current database assessment.

Finally, only one accepted dataset in Category I qualifies as a "new discovery" in the

sense that it was not previously available in some form, ie, the supersonic compression-
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corner data of Zheltovodov et al. The availability of these detailed data from the USSR is

a sign of recently-renewed cooperation between US and Soviet researchers in the field of

hypersonics.
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Category IA: Accepted Experiments, Hypersonic

Ref.: 56, 15
Author: Law, C. H.
Geometry: 3-D Fin
Mach number: 6
Data: pyan Cu

Ref.: 16, 17

Author: Coleman, G. T.

Geometry: 2-D Compression Corner
Mach number: 9

Data: pyuw, G

Ref.: 40, 39

Author: Holden, M. S.

Geometry: Axisymmetric Cone-Flare
Mach number: 11, 13

Data: py., €y

Ref.: 51

Author: Kussoy, M. 1, et al

Geometry: Axisymmetric Ogive-Cylinder-Flare
Mach number: 7

Data: py., G flowfield surveys

A
&

Ref.: 53

Author: Kussoy, M. 1, et al

Geometry: Axisymmetric Impinging Shock
Mach number: 7

Data: pou, Cu ¢ flowfield surveys

Uy
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Category IB: Accepted Experiments, Supersonic

Ref.: 88, 29

Author: Smits, A. J., et al

Geometry: 2-D Compression Corner

Mach number: 3

Data: p,u, ¢, mean & fluctuating flowfield surveys (pitot and hot-
wire anemometry)

Ref.: 103, private communication

Author: Zheltovodov, A. A, et al

Geometry: 2-D Compression Corner

Mach number: 3

Data: p.. ¢, mean and fluctuating flowfield surveys (pitot and hot-
wire anemometry)

Ref.: 49

Author: Bogdonoff, S. M., et al

Geometry: 3-D Fin

Mach number: 3

Data: p,;, mean flowfield surveys ("cobra" probe)

Ref.. 46

Author: Kim, K-S, et al
Geometry: 3-D Fin

Mach number: 3, 4

Data: p,., ¢, surface-flow angles

Ref.: 13, 27

Author: Dunagan, S. E., Brown, J. L., et al

Geometry: Axisymmetric Ogive-Cylinder-Flare

Mach number: 3

Data: p,., flowfield surveys (LDV and holographic interferometry)
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Category IB: Accepted Experiments, Supersonic (Concluded)

Ref.: 12
Author: Brown, J. D., et al
Geometry: Axisymmetric Ogive-Cylinder with Skewed Flare . =

Mach number: 3
Data: p,., flowfield surveys (LDV)

Ref.: 85
Author: McKenzie, T. M., et al

Geometry: 3-D Swept Compression Corner @
Mach number: 3 \

Data: p,,., mean flowfield surveys ("cobra" probe)
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Need for Further Experimentation

Based upon the results of this study, the following list conveys our recommendations

for further experimentation in hypersonic shock/boundary-layer interactions.

1
2)
3)

4)
5)

6)

Interactions involving real-gas effects

Flowfield turbulence data

One or more high-quality hypersonic laminar boundary-layer experiments for
COmparison purposes

Non-intrusive flowfield data (mean as well as fluctuating)

More complex types of "building-block” interactions, such as the double-fin or
crossing-shock-type interaction

Emphasis on 3-D rather than 2-D interactions
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Appendix B: Database Assessment

The following Table lists the 105 Database References which were subjected to an
evaluation based on the criteria described earlier in the Database Assessment section. The
Reference number given in the first column corresponds to the list of numbered Database
References in Appendix A. The Table includes a brief annotation of test geometry and
Mach number for each entry, followed by an evaluation field for each of 7 necessary and
S desirable criteria as discussed earlier. Note that, by definition, each of the 105 evaluated
studies met the first necessary criterion of baseline applicability. The remaining twelve

criteria are indicated in the table only by numbers, the meaning of which is as follows:

NECESSARY CRITERIA
#2  Simplicity
#3  Specific Applicability
#4  Well-Defined Experimental Boundary Conditions
#5  Well-Defined Experimental Error Bounds
#6  Consistency Criterion
#7  Adequate Documentation of Data
#8  Adequate Spatial Resolution of Data
DESIRABLE CRITERIA
#1  Turbulence Data
#2  Realistic Test Conditions
#3  Non-Intrusive Instrumentation
#4  Redundant Measurements
#5  Flow Structure and Physics
Each of these evaluation fields contains one of three symbols:

v/ Acceptable
X Not Acceptable

? No Determination Made
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The question-mark symbol indicates that the necessary information to evaluate that category
was lacking. In some cases, question marks or blanks in one or more evaluation fields also
may indicate that the evaluation was terminated after the candidate study failed one or
more of the "necessary” criteria. Finally, a "comments" field provides additional information
on the candidate study and its evaluation.

The abbreviations used in the TEST GEOMETRY Field of the Table are as follows:

Axi. axisymmetric

CcC compression corner
Cyl cylinder

FF forward-facing

IS incident shock wave
LE leading edge

SC semicone or half-cone
SCC swept compression corner
2-D two-dimensional

3-D three-dimensional

o angle of attack
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Appendix C: Data Tabulation

There follows a tabulation of pertinent data from the 5 Category IA and 7 Category
IB studies which make up the database. For each study a brief discussion of the data is
given for the benefit of users of the data. However, users are strongly encouraged to consult
the original references for more detail on what was measured and how it was accomplished.
Similarly, no attempt has been made to tabulate all available data from each of these
studies, but rather only those data most pertinent to the issues of turbulence modeling and
code validation. In several cases, additional data may be had from the original publications.
A 5.25" double-sided high-density "floppy" disk is also provided in original copies of this
report. This disk contains the data-tabies of this Appendix in machine-readable ASCII files,
formatted for MS-DOS computers. Individual ASCII files are given for each of the 12
Category I datasets with filenames as follows:

Category 1A: Category IB:

LAW.DAT SMITS.DAT, SETTLES.DAT

COLEMAN.DAT ZHELT.DAT

HOLDEN.DAT BOGDONOF.DAT

KUSSOY1.DAT KIM.DAT

KUSSOY2.DAT DUNAGAN.DAT
BROWN.DAT
MCKENZIE.DAT
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Ref.: 56, 15

Author: Law, C. H. ‘ //D—\

Geometry: 3-D Fin N
Mach number: 6 \M

Data: pyams Ch

Law, C.H., "3-D Shock Wave-Turbulent Boundary Layer Interactions At Mach 6," ARL TR
75-0191, 1974.

Christophel, R.G., Rockwell, W.A. and Neumann, R.D., "Tabulated Mach 6 3-D Shock
Wave-Turbulent Boundary Layer Interaction Heat Transfer Data," AFFDL-TM-74-212-FXG
and AFFDL-TM-74-212-FXG-Supplement, 1975.

The data consist of surface pressures and heat transfer coefficients beneath the swept
interaction generated by an oblique shock impinging on a flat-plate turbulent boundary
layer. The freestream Mach number was 5.85 for all tests. The coordinate system used is
x = streamwise coordinate and y = spanwise coordinate, with origin at the top left corner
of the flat plate as viewed from above. Coordinates are given in inches.

Surface data were measured along five spanwise rows in the interaction region. Fin
angles-of-attack of 6, 8, 10, 12, 16, and 20 degrees were tested, spanning a broad range of
interaction strength. These experiments were done at two distinct values of freestream
Reynolds number, 10 and 30 million/foot. Natural transition occurred on the flat plate.

Only the higher-Reynolds number data are tabulated here. Of these, only one
spanwise row of data is tabulated, generally corresponding to the last row taken (row 3).
Since it is now widely accepted that such interactions are quasi-conical in nature, the other
data rows are felt to be redundant. Redundant data in terms of repeated test conditions is
also contained in the data reports listed above, but not tabulated here.

This experiment suffers two problems worthy of mention. First, although an
acceptable boundary-layer profile was measured, it was obtained at the end of the flat plate
in the absence of the fin, not near the fin leading-edge position. That boundary-layer profile
is tabulated here even though it is not a proper incoming-flow boundary condition. This
problem is not believed to be a major one, since a boundary-layer code may be used to
match the given profile and then provide interpolated profiles at any location.

Secondly, the thin-skin thermocouple heat transfer technique used here is susceptible
to errors due to lateral heat conduction in regions of strong skin-temperature gradient. Such
strong gradients did occur for the stronger interactions represented here. No corrections
for conduction were made, although the experimenter did estimate the worst-case magnitude
of the errors at 15% to 25% of the peak heating value. This should be regarded as the
accuracy band of the peak heat transfer coefficient.
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Law, C. H. 3-D Fin Interaction Data AFFDL-TM-74-212-FXG-Supplement

FREESTREAM MACH NUMBER = 5.85

REFERENCE PRESSURE PREF = 1.432 PSIA

REFERENCE MEAT TRANSFER COEFFICIENT HREF = 0.0108 BTU/(FT*2-SEC-DEG R)
DEL = FIN ANGLE, DEGREES

XLE = X-LOCATION OF FIN LEADING EDGE, INCHES

YLE = Y-LOCATION OF FIN LEADING-EDGE, INCHES

PO = WIND TUNNEL STAGNATION PRESSURE, PSIA

TO = WIND TUNNEL STAGNATION TEMPERATURE, DEGREES RANKINE
X = X-LOCATION OF SPANWISE INSTRUMENTATION ROW, INCHES

= Y-LOCATION OF MEASUREMENT POINT, INCHES

= HEIGHT ABOVE FLAT PLATE, INCHES

= MACH NUMBER

= WALL STATIC PRESSURE, PSIA

VEN<

#a*x**QOUNDARY LAYER PROFILE***wwew

b4

0.018
0.043
0.066
0.0
0.120
0.145
0.170
0.195
0.220
0.246
0.276
0.301
0.329

o

\?‘BOGONNWWNGH

wmuoaviunuvunessSsuilWwNnNe X
NN WNDOWE SO

w
0
~n

RRRRRRRRARARRRRAAANRAAOENRNUAL | PRESSURE DATAN VAR RSk kAN A AA RN RAR RN RN AR SRR AW
' )

DEL=8 XLE=8.52

YLE=3.13 P0=2105.0

T0=1126.0 X=15.0

DEL=10 XLE=8.53
YLE=3.06 P0=2115.0
T0=1091.0 X=15.0

DEL=6.0 XLE=8.48
YLE=3.13 P0=2116.0
T0=1128.0 X=15.0

Y P/PREF Y P/PREF Y P/PREF
4.25 2.451 4.25 2.953 4.25 3.673
4.75 1.431 4.75 1.738 4.75 3.826
5.25 1.508 5.25 1.627 5.25 1.452
5.75 1.333 5.75 1.529 5.75 1.780
6.25 0.991 6.25 1.196 6.25 1.696
6.75 0.991 6.75 0.998 6.75 1.152
7.25 1.012 7.25 1.026 7.25 1.026
7.75 1.061 7.75 1.068 7.75 1.082
8.25 8.25 1.068 8.25 1.096
DEL=12 XLE=8.46 DEL=16 XLE=8.5 DEL=20 XLE=8.53

YLE=2.73 P0=2111.0
10=1108.0 X=13.0

YLE=2.75 P0=2112.0

T0=1126.0 X=15.0 T0=1136.0 X=15.0

] I
] 1
] 1
] i
] i
] |
] ]
] ]
1 1
] ]
I ]
i ]
1 ]
i [}
1 ]
] ]
] 1
| {
) )
] []
t ]
t ]
] ]
] ]
] ]
] ]
1.089 ! |
3 ]
[} I
] 1
] ]
] (]
1 ]
1 1
] ]
i 1
i ]
1 ]
] 1
] ]
] ]
t )
t 1]
] ]
] 1
1) ]
[} ]
] ]
] I
] I
] 1
I 1
I 1
1 ]
1 ]
1 ]
1 3

Y P/PREF Y P/PREF Y P/PREF
4.25 4.825 6.75 6.927 4.75 8.840

4.75 3.079 5.25 4.406 5.25 1.731

5.25 1.515 5.75 1.850 5.75 2.261

5.75 1.857 6.25 2.039 6.25 2.458

6.25 1.766 6.75 2.261 6.75 2.269

6.75 1.256 7.25 2.143 7.25 1.096

7.25 0.984 7.75 1.270 7.75 1.187

7.75 1.033 8.25 1.277 8.25 1.277

8.25 1.040
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AARTARARTXRRRARARRECRCNCCTUNCUEAT TRANSFER DATA"'*tt***tti*ttttti*.tttitttf’ttt

DEL=6.0 XLE=8.49 | DEL=8.0 XLE=8.58 | DEL=10.0  XLE=8.60
YLE=2.8 P0=2121.0 |  YLE=3.1 PO=2119.0 | YLE=3.13  P0=2124.0
10=1129.0  x=15.0 I 70=1117.0  X=15.00 | 7T0=1104.0  X=15.0
i I
i 1
Y H/HREF Y H/HREF by H/HREF
3.25 0.117 3.75 0.037 L 4.00 0.102
3.50 0.529 4.00 0.852 I 4.25 1.192
3.75 2.717 4.25 3.150 I 4.50 4.031
4.00 2.636 4.50 3.307 !4 3.743
4.25 2.071 4.75 2.331 ! 5,00 2.199
4.50 1.482 5.00 1.662 I 5,25 1.766
4.75 0.965 5.25 1.37M ! 5.50 1.634
5.00 1.068 5.50 1.157 { o 5.75 1.4
5.25 1.099 5.75 1.076 C6.25 1.050
5.50 1.141 6.25 0.789 L6.T5 1.197
6.75 1.054 L7285 1.354
7.25 1.295 . 1.199
7.75 1.220 I 8.25 1.058
I 8.25 1.043 !
1 1
1 1
DEL=12.0  XLE=8.52 DEL=16.0  XLE=8.56 | DEL=20.0  XLE=B.58
YLE=2.88  P0=2129.0 YLE=2.88  P0=2129.0 | YLE=2.63  P0=2122.0
T0=1098.0  X=15.0 T0=1120.0  X=15.0 I 70=1109.0  X=15.0
]
]
Y H/MREF Y H/HREF by H/HREF
3.75 0.007 4.00 0.025 L 4.25 0.005
4.00 0.164 ! 4.25 0.075 ! 4.50 0.079
4.25 1.458 ! 4.50 0.297 b6.Ts 0.626
4.50 4.713 A 3.010 ! 5.00 3.752
4.75 4.352 ! 5.00 5.838 L5.25 6.827
5.00 2.361 I 5.25 4.670 I 5.50 5.625
5.25 1.805 I 5,50 2.735 I 5.75 3.195
5.50 1.855 I 5,75 2.183 I 6.25 2.363
5.75 1.756 I 6.25 1.844 L6.75 3.176
6.25 1.065 L6.75 2.085 I 7.25 2.629
6.75 1.203 17,25 1.491 V7.7 1.467
7.25 1.398 17,75 1.216 I8.25 0.883
7.75 1.252 ! 8,25 1.058
8.25 1.121 : '

tt*******i*tti*tl*t****t*******END OF FILE®®® ket drde ke kA WA Ak e wrsedr ke n
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Ref.: 16, 17, 28

Author: Coleman, G. T.

Geometry: 2-D Compression Corner
Mach number: 9

Data: pua C

Coleman, G.T., "Hypersonic Turbulent Boundary Layer Studies," Ph.D. Thesis, Univ. of
London, 1973.

Coleman, G.T., and Stollery, J.L., "Heat Transfer From Hypersonic Turbulent Flow At a
Wedge Compression Corner," Journal of Fluid Mechanics, Vol. 56, 1972, pp. 741-752.

Elfstrom, G.M., "Turbulent Hypersonic Flow at a Wedge-Compression Corner,"” Journal of
Fluid Mechanics, Vol. 53, 1972, pp. 113-127.

A flat plate and wedge compression corner were used to generate this dataset in a
hypersonic gun tunnel with nitrogen as the test gas. Experiments are reported in Refs. 16
and 17 at Mach numbers of 8.96 and 9.22, though only the latter are included in this
database. The slightly-lower Mach number data were also at a lower Reynolds number
where boundary-layer tripping was thought necessary, hence these data are not included.
Similarly, data obtained on a hollow-cylinder-flare model were not included because no
incoming boundary-layer profile was measured.

The Mach 9.22 data include compression corner angles of 15, 30, 34, and 38 degrees
for which surface-pressure and heat-transfer data are tabulated here. Users are encouraged
to consult the cited References for a complete discussion of these data.

Note that the x-dimension cited in the data tables is always in the streamwise
direction, even for points located on the sloped surface of the compression ramp. The
origin of x is fixed at the compression corner, so that locations upstream of the corner have
negative values.

The tabulated surface pressure data were actually obtained by Elfstrom in a
companion study (Ref. 28). In none of these references are the stagnation and freestream
static pressure conditions of the flow explicitly given. Rather, static pressure distributions
are only cited in normalized form. This is thought to be typical of gun-tunnel operations,
where a constant value of stagnation pressure is never actually achieved and thus
normalization is a necessity. Users of these pressure data should bear in mind the possible
adverse effect of such a procedure on the accuracy of the data.

The measured boundary-layer profile was actually taken "near the end of" the 76 cm
flat plate. No boundary-layer integral parameters are stated in the cited references. The
boundary-layer wake-strength parameter, however, is stated to be 0.2.
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whRRAAATRAANRRERANNCNC 0| aman Mach 9 cmpression Corner Data* YRtk kAvhhdwehddn

ittt.tttttt.t.'.ttittt'ttiaowary. Layer Profi le"tti..'tt't'ﬁi'tt'tt.'.tttiﬁtt

Minf = 9,22

Re_inf/cm = 4.TE+05
Tstagnation = 1070 deg K
Tinf = 64.5 deg K

Twall = 295 deg K
Twall/Trecovery = 0.28
Delta = 0.72 cm

y/Delta M/Minf u/Uinf
0.040 0.253 0.620
0.078 0.349 0.760
0.083 0.370 0.780
0.125 0.365 0.780
0.142 0.386 0.795
0.189 0.406 0.812
0.210 0.470 0.860
0.230 0.473 0.862
0.277 0.509 0.884
0.294 0.539 0.900
0.322 0.561 0.910
0.332 0.574 0.915
0.341 0.578 0.917
0.364 0.584 0.918
0.406 0.599 0.924
0.424 0.658 0.941

0.461 0.667 0.944
0.490 0.679 0.947
0.517 0.672 0.945
0.525 0.496 0.952
0.542 0.720 0.957
0.560 0.760 0.965
0.578 0.760 0.965
0.590 0.775 0.968
0.640 0.802 0.974
0.669 0.847 0.981

0.709 0.868 0.984
0.730 0.902 0.989
0.770 0.952 0.995
0.794 0.960 0.996
0.798 0.966 0.997
0.859 0.974 0.998
0.888 0.980 0.998
0.920 0.988 0.998
0.978 0.990 0.999
0.998 0.995 0.999
1.04 0.996 0.999
1.13 1.00 1.00

1.25 1.00 1.00

It'ttti.tiitt*'t*it**cole'nan Hach 9 Conpl‘ession corner Data*.ﬁ"..i"ﬁitii.t'.tt

Minf = 9.22

Re_inf/cm = 4.7E+05

ReL = 26.2E+06
Tstagnation = 1070 deg X
Tinf = 64.5 deg X

Twall = 295 deg X
Twall/Trecovery = 0.28
Pinf/Pstagnation = 0.45
Delta = 0.72 cm

Alpha = 15 degrees Alpha = 30 degrees

Qinf = 6.07 W/cm**2 Qinf = 6.17 W/cm**2

X, cm  Pw/Pinf i X, cm Qu/Qinf X, cm  Pw/Pinf i X, cm Qw/Qinf
-1.9 0.99 H -4.2 1.06 -1.65 1.05 H -5.7 0.99
-1.4 1.0 i -3.65 .1 - 14 1.05 i -4.85 0.96
-0.9 1.02 h -3.1 0.96 -1.14 1.06 H -4.4 1.09
-0.4 1.04 i -2.6 0.96 -0.89%9 1.08 i -4.2 0.94
0.3 3.47 H -2.05 1.03 -0.64 1.1 H -3.65 1.0
0.84 4.7 i -1.65 0.86 -0.38 1.28 i -3.1 0.94
1.1 5.86 7 -1.35 0.94 0.25 7.45 ;2.6 0.95
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Ref.: 40, 39, 38
Author: Holden, M. S.

Geometry: Axisymmetric Cone-Flare ‘<<‘i:
Mach number: 11, 13

Data: puapy Cu

Holden, M.S., "Experimental Studies of Quasi-Two-Dimensional and Three- Dimensional
Viscous Interaction Regions Induced by Skewed- Shock and Swept-Shock Boundary Layer
Interaction,” AIAA Paper 84-1677, 1984.

Holden, M.S., Havener, A.G. and Lee, C.H., "Shock Wave/Turbulent Boundary Layer
Interaction in High- Reynolds-Number Hypersonic Flows," CUBRC-86681, 1986.

Holden, M.S., Bergman, R.C.,, Harvey, J., Duryea, G.R. and Moselle, J.R., "Studies of the
Structure of Attached and Separated Regions of Viscous/Inviscid Interaction and the Effects
of Combined Surface Roughness and Blowing in High Reynolds Number Hypersonic Flows,"
AFOSR-89-0033TR, 1988

The data consist of surface pressures and heat transfer coefficients beneath the
axisymmetric interaction generated by the shock due to a flare interacting with the turbulent
boundary layer on a large, sharp-nosed 6 degree half-angle cone in the Calspan 96-inch
Shock Tunnel. Flare angles of 30 and 36 degrees were tested at both Mach 11 and Mach
13, comprising four shock-tunnel runs as tabulated below. The data given below were not
published previously, but were obtained directly from M. S. Holden

Boundary-layer profiles just ahead of the cone-flare intersection were measured via
11-tube pitot- and temperature-rakes and are plotted in CUBRC Report 86681 referenced
above. The locations of the surveys were 1.2 inches upstream of the corner for Mach 11 and
2.0 inches upstream for Mach 13. These profiles were necessarily rather coarse due to the
manner in which they were obtained. In their place, Holden has provided "interpolated”
profiles in which points are given at increments of 0.02 in y/é. Users of these data should
bear in mind that the original, measured boundary-layer profiles consisted of only 11 data
points across the boundary-layer thickness. Also, no boundary-layer integral parameters
were provided by the experimenter, so none are tabulated here.

The location of the flare compression corner was 104.6 inches along the cone surface
from the cone tip. It appears that the given x-dimensions of the instrumentation sites are
all given in terms of distance along the cone surface from its tip, even for x > 104.6 inches
where the instrumentation was actually mounted on the flare. Y is the corresponding
dimension normal to the cone surface.

Important note: Although the flare angles cited by Holden and tabulated here are
given as 30 and 36 degrees, their actual angles with respect to the symmetry axis of the
cone-flare model are 36 and 42 degrees, respectively. The 30 and 36 degree angles are
relative to the surface of the 6 degree forecone.
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Holden, M. S.

Run number = 8

Cone Angle of Attack (degrees) = 0

Angle of Cone (degrees) = &

Length Along Cone (inches) = 104.6

Angle of Flare (degrees) = 30
Length of Flare (inches) = 9

Reservoir Total Pressure = 7234 PSIA

Reservoir Total Temperature
Freestream Mach number = 10.98

2727 deg R

Freestream Velocity = 5931 ft/sec

Ffreestream Static Pressure
freestream Static Temperature
Freestream Reynolds number = 3651000/ft
Wall Enthalpy (Cp*Tw) = 3183000 (Ft/sec)

0.09078 PSIA
121.3 deg R

2

Axisymmetric Cone-Flare Data

AlAA Paper 84-1677

wewwwrewAL | PRESSURE & HEAT TRANSFER DATA%*#wwwwwwwwswwww=BOUNDARY-LAYER DATA**¥*#wsswsuseananus

Gage #
P1
P3
P7
P9
P11
P13
P14
P16
P17
P18
P19
P20
p21
p22
P24
P26
P27
p28
p29

Gage #
HT1
HTS
HT6
HT7
HT8
HT?
HT10
HT11
HT12
HT13
HT14
HT16
HT17
HT18
HT19
HT20
HT21
HT22
KT23
HT24
HT25
HT26
HT27
HT28
HT29

X inches
98.9105

100.
101.
102.
103.
103.
104.
104.
105.
.6825
106.
106.
107.
107.
.6805

105

108

109.
110.
.6825

m

112.

195
9185
5125
1135
7165
0165
6765
1835

1825
6825
1835
6835

6825
6825

6825

X inches
98.9105

101.
101.
101.
102.
102.
102.
103.
103.
103.
104.
104.
105.
105.
106.
106.
107.
107.
108.
108.
109.
109.
.6825
.6825
112.

110
m

3175
6065
9185
2195
5125
8135
1135
4165
7165
0165
6765
1835
6825
1825
6825
1835
6835
1765
6805
1835
6825

6825

Press. PSIA
2.366E-01
2.672E-01
2.700E-01
2.685E-01
2.803E-01
2.677E-01
2.66%9E-01
2.250E+00
5.297E+00
6.390E+00
1.043E+01
9.707E+00
llNul lll
9.788E+00
1.063E+01
1.135€+01
9.166E+00
9.016E+00
8.899e+00

BTU/FT2/SEC
5.806E+00
5.603e+00
6.656E+00
6.411E+00
5.153e+00
ll"ul l (1]
5.930E+00
5.495€+00
4, 726€E+00
6.010€+00
5.796€E+00
1.124€+02
1.181E+02
llNul lll
L443E+02
.323e+02
.316E+02
.522E+02
.392E+02
.208E+02
.04BE+02
.056€E+02
.00SE+02
.250E+01
. 706E+01

OO = mb bt b a s s

Y inches

0.014
0.028
0.042
0.056
0.070
0.084
0.098
0.112
0.127
0.141
0.155
0.169
0.183
0.197
0.211
0.225
0.239
0.253
0.267
0.281
0.295
0.309
0.323
0.337
0.351
0.366
0.380
0.394
0.408
0.422
0.436
0.450
0.464
0.478
0.492
0.506
0.520
0.534
0.548
0.562
0.576
0.590
0.605
0.619
0.633
0.647
0.661
0.675
0.689
0.703

51

U/UE

0.493
0.572
0.618
0.651
0.676
0.697
0.716
0.731
0.746
0.760
0.772
0.784
0.795
0.806
0.816
0.826
0.836
0.845
0.854
0.863
0.871
0.880
0.887
0.895
0.902
0.910
0.916
0.923
0.929
0.935
0.941
0.946
0.952
0.956
0.961
0.965
0.969
0.973
0.976
0.980
0.983
0.986
0.988
0.991
0.993
0.995
0.996
0.998
0.999
1.000

MACH#
2.186
2.613
2.890
3.105
3.285
3,444
3.589
3.725
3.855
3.981
4,104
4.226
4.347
4.469
4.591
4.715
4.840
4.967
5.097
5.229
5.363
5.500
5.639
5.781
5.925
6.072
6.221
6.371
6.523
6.677
6.831
6.985
7.140
7.296
7.447
7.597
7.746
7.891
8.033
8.170
»8.301
8.427
8.547
8.659
8.763
8.859
8.946
9.024
9.092
9.150

TT/TTE
0.469
0.535
0.576
0.607
0.631
0.652
0.670
0.687
0.702
0.716
0.729
0.742
0.754
0.766
0.778
0.789
0.800
0.810
0.821
0.831
0.841
0.851
0.860
0.869
0.877
0.886
0.895
0.902
0.910
0.917
0.924
0.931
0.938
0.944
0.950
0.955
0.960
0.965
0.970
0.974
0.978
0.981
0.985
0.988
0.990
0.993
0.995
0.997
0.998
1.000



Holden, M. S. Axisymmetric Cone-Flare Data

Run number = &

Cone Angle of Attack (degrees) = 0

Angle of Cone (degrees) = 6

Length Along Cone (inches) = 104.6
Angle of Flare (degrees) = 36

Length of Flare (inches) = 9

Reservoir Total Pressure = 7001 PSIA
Reservoir Total Temperature = 2649 deg R
Freestream Mach number = 10.97
Freestream Velocity = 5836 ft/sec
Freestream Static Pressure = 0.08943 PSIA
Freestream Static temperature = 117.8 deg R
Freestream Reynolds number = 3755000/ft 5
Wall Enthalpy (Cp*Tw) = 3183000 (Ft/sec)

AlAA Paper 84-1677

swwaeanwUaL| PRESSURE & HEAT TRANSFER DATAS®®*wwwwwawwkwawsBOUNDARY-LAYER DATA®***WW*¥w*wanusswus

Gage # X inches Press. PSIA Y inches
P1 98.9105 2.6728E-01 0.014
P3 100.1195 2.8851E-01 0.028
P7 101.9185 3.4467E-01 0.042
P9 102.5125 8.0524E-01 0.056
P11 103.1135 1.29314E+00 0.070
P13 103.7165 1.38824E+00 0.084
P14 104.0165 1.53297e+00 0.098
P16 104.6765 1.30152E+00 0.112
P17 105.1835 "Nul Lv 0.127
P18 105.6825 MNul L 0.141
P19 106.1825 1.49127€+01 0.155
P20 106.6825 1.51135e+01 0.169
p21 107.1835 1.26621E+01 0.183
p22 107.6835 1.39913E+01 0.197
P24 108.4805 1.45225E+01 0.211
P26 109.6825 1.54217e+01 0.225
P27 110.6825 1.29523E+01 0.239
p28 111.6825 1.19923E+01 0.253
P29 112.6825 1.22768BE+01 0.267
0.281
Gage # X inches BTU/FT2/SEC 0.295
HT1 98.9105 5.85107E+00 0.309
HTS 101.3175 5.71897E+00 0.323
HT6 101.6065 5.80157E+00 0.337
HY7 101.9185 6.16079€+00 0.351
HT8 102.2195 9.01738€+00 0.366
HT9 102.5125 1.47118E+01 0.380
HT10 102.8135 1.46640E+01 0.394
HTT1 103.1135 1.32007€+01 0.408
HT12 103.4165 1.33030e+01 0.422
HT13 103.7165 1.19369E+01 0.436
HT14 104.0165 1.74385E+01 0.450
HT16 104 .6765 WNul " 0.464
HT17 105.1835 9.00276E+01 0.478
HT18 105.6825 1.72171E+02 0.492
HT19 106.1825 2.03513€E+02 0.506
HT20 106.6825 1.97140€+02 0.520
HT21 107.1835 1.77999€E+02 0.534
HT22 107.6835 1.75618e+02 0.548
HT23 108.1765 1.65347E+02 0.562
HT264 108.6805 1.46599E+02 0.576
HT25 109.1835 1.46159E+402 0.5%0
HT26 109.6825 1.36357E+02 0.605
HT27 110.6825 1.29164E+02 0.619
HT28 111.6825 1.04948E+02 0.633
HT29 112.6825 1.02294E+02 0.647
0.661
0.675
0.689
0.703
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U/UE

0.493
0.572
0.618
0.651
0.676
0.697
0.716
0.731
0.746
0.760
0.772
0.784
0.795
0.806
0.816
0.826
0.836
0.845
0.854
0.863
0.871
0.880
0.887
0.895
0.902
0.910
0.916
0.923
0.929
0.935
0.941
0.946
0.952
0.956
0.961
0.965
0.969
0.973
0.976
0.980
0.983
0.986
0.988
0.991
0.993

MACH#
2.186
2.613
2.8%0
3.105
3.285
3.444
3.589
3.725
3.855
3.981
4.104
4.226
4.347
4,469
4.591
4.715
4.840
4.967
5.097
5.229
5.363
5.500
5.639
5.781
5.925
6.072
6.221
6.371
6.523
6.677
6.831
6.985
7.140
7.294
7.447
7.597
7.746
7.891
8.033
8.170
8.301
8.427
8.547
8.659
8.763
8.859
8.946
9.024
9.0%92
9.150

TT/TTE
0.469
0.535
0.576
0.607
0.631
0.652
0.670
0.687
0.702
0.716
0.729
0.742
0.754
0.766
0.778
0.789
0.800
0.810
0.821
0.831
0.841
0.851
0.860
0.869
0.877
0.886
0.895
0.902
0.910
0.917
0.924
0.931
0.938
0.944
0.950
0.955
0.960
0.965
0.970
0.974
0.978
0.981
0.985
0.988
0.990
0.993
0.995
0.997
0.998
1.000



Holden, M. S. Axisymmetric Cone-Flare Data

Run number = 7

Cone Angle of Attack (degrees) = 0
Angle of Cone (degrees) = 6

Length Along Cone (inches) = 104.6
Angle of Flare (degrees) = 30

Length of Flare (inches) = 9

Reservoir Total Pressure = 17230 PSIA
Reservoir Total Temperature = 3246 deg R
Freestream Mach number = 12,92
Freestream Velocity = 6634 ft/sec
Freestream Static Temperature = 109.7 deg R
Freestream Static Pressure = 0.07272 PSIA
Freestream Reynolds number = 4000000/ft 3
wall Enthalpy (Cp*Tw) = 3183000 (Ft/sec)

AIAA Paper 84-1677
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Gage # X inches Press. PSIA Y inches
P1 98.9105 2.577e-01 0.015
P3 100.1195 3.032e-01 0.029
P7 101.9185 3.261E-01 0.044
P9 102.5125 3.040€-01 0.059
P11 103.1135 3.605€-01 0.074
P13 103.7165 3.650E-01 0.088
P14 104.0165 4.115€-01 0.103
P16 104.6765 "Rul L® 0.118
P17 105.1835 6.149E+00 0.133
P18 105.6825 7.350E+00 0.147
P19 106.1825 1.358€+01 0.162
P20 106.6825 1.243E+01 0.177
p21 107.1835 UNul v 0.191%
p22 107.6835 1.218€+01 0.206
P24 108.6805 1.394€+01 0.221
P26 109.6825 1.431E+01 0.236
p27 110.6825 1.188E+01 0.250
p28 111.6825 1.175e+01 0.265
P29 112.6825 1.219E+01 0.280
0.295
Gage # X inches BTU/FT2/SEC 0.309
HT1 98.9105 "Null® 0.324
HTS 101.3175 8.217E+00 0.339
HT6 101.6065 9.402E+00 0.353
HT7 101.9185 9.852E+00 0.368
HT8 102.2195 8.042E+00 0.383
HT9 102.5125 9.473E+00 0.398
HT10 102.8135 8.531€+00 0.412
HT11 103.1135 8.600E+00 0.427
HT12 103.4165 7.930€E+00 0.442
HT13 103.7165 1.013e+01 0.457
HT14 104.0165 8.931E+00 0.471
HT16 104 .6765 4.236E+02 0.486
HT17 105.1835 3.791E+02 0.501
HT18 105.6825 WNul " 0.515
HT19 106.1825 3.199e+02 0.530
HT20 106.6825 2.818e+02 0.545
HT21 107.1835 4.178e+02 0.560
HT22 107.6835 3.879E+02 0.574
HT23 108.1765 3.152E+02 0.589
HT24 108.6805 2.296E+02 0.604
HT25 109.1835 2.287€+02 0.619
HT26 109.6825 1.925E+02 0.633
HT27 110.6825 1.819€+02 0.648
HT28 111.6825 1.624E+02 0.663
HT29 112.6825 1.455E+02 0.677
0.692
0.707
0.722
0.736
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U/UE

0.486
0.567
0.614
0.648
0.674
0.696
0.714
0.731
0.746
0.759
0.772
0.784
0.795
0.806
0.817

MACH#
2.266
2.718
3.014
3.243
3.437
3.609
3.766
3.9
4.056
4,194
4.329
4,463
4.598
4.732
4.869
5.007
5.148
5.291
5.437
5.587
5.740
5.896
6.056
6.220
6.387
6.557
6.731
6.907
7.086
7.268
7.451
7.636
7.821
8.006
8.191
8.374
8.555
8.733
8.907
9.076
9.239
9.395
9.543
9.683
9.814
9.934
10.043
10.141
10.227
10.300

TT/TTE
0.445
0.515
0.559
0.591
0.617
0.639
0.659
0.676
0.692
0.707
0.722
0.735
0.748
0.760
0.772
0.784
0.795
0.807
0.817
0.828
0.838
0.848
0.858
0.867
0.877
0.885
0.89%94
0.902
0.910
0.918
0.925
0.932
0.938
0.944
0.950
0.955
0.960
0.965
0.970
0.974
0.978
0.981
0.985
0.988
0.990
0.993
0.995
0.997
0.998
1.000



Holden, M. S.
Run number = 6

Cone Angle of Attack (degrees) = 0

Angle of Cone (degrees) = 6

Length Along Cone (inches) = 104.6

Angle of flare (degrees) = 36
Length of Flare (inches) = 9

Reservoir Total Pressure
Reservoir Total Temperature
Freestream Mach number

17600 PSIA
3104 deg R

Freestream Velocity = 6458 ft/sec

Freestream Static Pressure
Freestream Static Temperature
Freestream Reynolds number
Wall Enthalpy (Cp*Tw) = 3183000 (Ft/sec)

0.07345 PSIA
102.6 deg R
5090000/t

2

Axisymmetric Cone-Flare Data

ALAA Paper 84-1677

sawwwwwwypl| PRESSURE & HEAT TRANSFER DATA®**wwwwwsswwxxxw*BOUNDARY-LAYER DATANW#*#wwwaawwwwwnans

Gage #
P1
P3
P7
P9
P11
P13
P14
P16
P17
P18
P19
P20
p21
p22
p24
P26
P27
P28
P29

Gage #
HT1
RTS
HT6
NT7
HT8
HT9
HT10
HT11
HT12
HT13
HT14
HT16
HT17
HT18
HT19
HT20
HT21
HY22
HT23
HT24
HT25
HT26
HT27
HT28
HT29

X inches
98.9105

100.1195
101.9185
102.5125
103.1135
103.7165
104.0165
104 .6765
105.1835
105.6825
106.1825
106.6825
107.1835
107.6835
108.6805
109.6825
110.6825
111.6825
112.6825

X inches
98.9105

101.3175
101.6065
101.9185
102.2195
102.5125
102.8135
103.1135
103.4165
103.7165
104.0165
104 .6765
105.1835
105.6825
106.1825
106.6825
107.1835
107.6835
108.1765
108.6805
109.1835
109.6825
110.6825
111.6825
112.6825

Press. PSIA
2.8474E-01
2.9218€-01
4 .9656€E-01
9.9969€-01
1.3961€E+00
1.5696E+00
1.7067e+00
1.5295€E+00
5.0433E+00

Nt
1.8144E+01
2.1674E+01

llNul l L[]
1.7335E+01
1.8623E+01
2.0844E+01
1.4811E+01
1.6215E+01
1.668TE+01

BTU/FT2/SEC
8.8680E+00
7.2142E+00
7.6842E+00
1.0260E+01
1.3595E+01
1.7688E+01
1.9199€+01
2.0174E+01
1.7752e+01
2.1149€+01
2.3570E+01
1.9627€+02
2.0182e+02

IlNul l [1]
4.3151E+02
3.8457E+02

.3251E+02

.5576E+02

. 1065E+02

.5936E+02

.2652E+02

LG4T2E+02

. 1926€+02

.6218€+02

.7518E+02

Lt A R AS IV I VR VIR g

Y inches

0.015
0.029
0.044
0.059
0.074
0.088
0.103
0.118
0.133
0.147
0.162
0.177
0.1
0.206
0.221
0.236
0.250
0.265
0.280
0.295
0.309
0.324
0.339
0.353
0.368
0.383
0.398
0.412
0.427
0.442
0.457
0.471
0.486
0.501
0.515
0.530
0.545
0.560
0.574
0.589
0.604
0.619
0.633
0.648
0.663
0.677
0.692
0.707
0.722
0.736
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U/UE

0.486
0.567
0.614
0.648
0.674
0.696
0.714
0.731
0.746
0.759
0.772
0.784
0.795
0.806
0.817
0.827
0.837

MACH#
2.266
2.718
3.014
3.243
3.437
3.609
3.766
3.914
4.056
4.194
4.329
4.463
4.598
4.732
4.869
5.007
5.148
5.291
5.437
5.587
5.740
5.896
6.056
6.220
6.387
6.557
6.731
6.907
7.086
7.268
7.451
7.636
7.821
8.006
8.1
8.374
8.555
8.733
8.907
9.076
9.239
9.395
9.543
9.683
9.814
9.93¢4
10.043
10.141
10.227
10.300

TT/TIE
0.445
0.515
0.559
0.591
0.617
0.639
0.659
0.676
0.692
0.707
0.722
0.735
0.748
0.760
0.772
0.784
0.795
0.807
0.817
0.828
0.838
0.848
0.858
0.867
0.877
0.885
0.894
0.902
0.910
0.918
0.925
0.932
0.938
0.944
0.950
0.955
0.960
0.965
0.970
0.974
0.978
0.981
0.985
0.988
0.9%90
0.993
0.995
0.997
0.998
1.000



Ref.: 51

Author: Kussoy, M. L, et al
Geometry: Axisymmetric Ogive-Cylinder-Flare — (=
Mach number: 7

Data: p,,, ¢ flowfield surveys

Kussoy, M.I. and Horstman, C.C, "Documentation of Two- and Three-Dimensional
Hypersonic Shock Wave /Turbulent Boundary Layer Interaction Flows," NASA TM 101075,
1989.

This experiment provides data on an axisymmetric ogive-cylinder body with flares of
various angles at Mach 7. The range of flare angles spans conditions from fully unseparated
to well-separated flow. The data include wall pressures, heat transfer, and limited flowfield
surveys obtained by pressure probes. The following tabulation includes freestream
conditions, the incoming boundary-layer profile, three additional profiles through the 20
degree flare interaction, and wall pressure and heat transfer data for the 20, 30, 32.5, and
35 degree flare interactions. Note that the given dimension X is actually measured along
the surface of the model with origin at the cylinder-flare corner. Points upstream of this
location have negative X-values, while those downstream lie along the flare and have
positive values. The cylinder-flare corner itself lies at 139 cm downstream from the tip of
the ogival nose.

Users of these data are encouraged to read Ref. 51, which includes additional
pertinent information. The uncertainty estimates placed on the data by the experimenters
are also discussed therein. Note that Ref. 51 also contains data on an ogive-cylinder model
with a fin, but these data are not included in the database due to the complexity of the
geometry.
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*hwnnanswwnerrreny ssoy et al, Ogive-Cylinder-Flare, Mach 7**wrswrwstdwrtuatin

AN AARRNENNRNNNNE raagtream F low comi t H mst'ittt'tt'.i.!itt"i'iti"ttt'i*f'.t

Minf = 7.05

Tinf = 81.2 deg K

pinf = 576 Pa

RHOinf = 0.0252 kg/m**3
Twall = 311 deg K

Uinf = 1276 m/s

Re/m = 5,8E+06

Wk wkNWREdwdw v | ncuni ng Bounda ry- L.Yer comi t 1 onstt*tttt*tiﬁ't'iﬁ****t*ttttttt

DELTA = 2.5 cm
DELTA* = 0.74 cm

THETA = 0.065 cm
Cfinf = 1.22E-03
Chinf = 0.59€-03
Y, cm M u/uinf TT/TTinf

0.000 0.000 0.000 0.350
0.065 1.547 0.470 0.638
0.093 2177 0.601 0.6%0

0.120 2.745 0.699 0.752
0.180 3.1 0.759 0.805
0.250 3.356 0.791 0.830
0.320 3.610 0.822 0.858
0.390 3.835 0.836 0.858
0.460 4.070 0.858 0.877
0.620 4.626 0.896 0.905
0.770 5.248 0.929 0.930
0.940 5.739 0.954 0.954
1.090 6.070 0.967 0.966
1.260 6.340 0.982 0.986
1.450 6.599 0.986 0.986
1.640 6.820 0.992 0.991
1.900 6.962 0.999 1.000
2.150 7.022 1.000 1.000
2.400 7.048 1.000 1.000
2.700 7.050 1.000 1.000
3.000 7.050 1.000 1.000

rheRrRARRREC* s | Pressure and Heat Transfer Distributions**ewkwawansatenwunias

Alpha = 20 degrees Alpha = 30 degrees

X, cm Pw/Pinf! X, cm Qw/Qinf X, cm Pw/Pinf | X, cm Qw/Qinf
-11.3  0.97 } 12.06 0.98 -11.3 1.0 |} -12.08 0.99
-10.3 0.98} -10.8 1.05 -10.3 0.98 | -10.8 0.99
-9.3 0.96 | -9.52 1.06 -9.3 0.97 | -9.52 1.0
-8.3 0.98 | -8.26 1.02 -8.3 0.98 | -B8.26 1.0
-7.3 0.97 | -6.98 1.03 -7.3 1.0 b -6.98 1.01
-6.3 0.99 | -5.73 1.0 -6.3 1.0 i -5.73 1.01
-5.3 1.03